

Compact Course Polynomial Optimization – Series 4

https://www.mathcore.ovgu.de/TEACHING/COMPACTCOURSES/2020opt.php

July 27, 2020

Exercise 4.1

Let $m, n \in \mathbb{N}$, let $K \subseteq \mathbb{R}^n$ and $L \subseteq \mathbb{R}^m$ be closed convex cones and let $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$. Consider the problems

$$\alpha \coloneqq \inf\{\langle c, x \rangle \mid x \in K, Ax - b \in L\}$$

and

$$\beta \coloneqq \sup\{\langle y, b \rangle \mid y \in L^*, \ c - A^{\mathsf{T}}y \in K^*\}.$$

Show that the following hold:

(a) The problems satisfy weak duality.

- (b) If there exists an x' with $x' \in int(K)$ and $Ax b \in int(L)$, then strong duality holds.
- (c) If there exists an y' with $y' \in int(L^*)$ and $c A^{\mathsf{T}}y \in int(K^*)$, then strong duality holds.

Exercise 4.2

Show that for every $k \in \mathbb{N}$ one has $(\mathcal{S}^k_+)^* = \mathcal{S}^k_+$ (i.e., the cone \mathcal{S}^k_+ is self-dual).

Exercise 4.3

Formulate the problem of computing the largest eigenvalue of a symmetric matrix as an SDP.

Exercise 4.4

Consider the SDP

$$\inf \left\{ x : \begin{pmatrix} 0 & x \\ x & y \end{pmatrix} \text{ psd}, \ x \ge -1 \right\}.$$

- (a) What is the optimal value of this problem?
- (b) What is the optimal value of its dual?