
MATHCORE: Exercises 19/07/2018

Problem [1]. Approximation of the image: saturn.png.

1. The singular values on a logarithmic scale are:
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Figure 1: Original picture and the Singular values decay.

2. In order to compute the optimal rank r approximation we need to compute the Singular Value
Decomposition of the image matrix. the approximation errors were computed using the matlab
comand norm(Z-Zr,2). The maximum singular value is σ1 = 369.0955. The ranks of the ap-
proximants, the approximation errors (2-norm) and the compression ratios for each desired relative
errorare provided in the next table below:

Relative % error Approximation rank Approximation error R
10 7 30.17 0.0105
5 12 16.79 0.0180
2 27 7.310 0.0405

Problem [2]. Ellipse fitting using LS and TLS.

(a) Least square (LS) and total least square (TLS) solution:

% (LS) Least square approach A1*w=b1

A=[xn.^2.’ yn.^2.’];

b=ones(N,1);

[U,S,V]=svd(A,0);

Api=V*S^(-1)*U’;

w=Api*b;

% (TLS) Total Least Square A2*q=0

At=[xn.^2.’ yn.^2.’ ones(N,1)];

[Ut,St,Vt]=svd(At,0);

wt=Vt(:,3)/Vt(3,3);

N = 63 points Error Coefs Std of Noise
LS 0.9867 (α, β) = (0.9480, 0.2470) 0.08

TLS 0.7647 (ᾱ, β̄, γ̄) = (0.9656, 0.2458,−1) 0.08

(b) Next is the plot with the two approximants.
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Problem [3]. Power Method for computing the PageRank.

In this problem, we will use the Power Method for ranking MPI-related webpages.

(a) Here, a database of webpages starting from an initial URL has to be constructed. For this task, we
will use the m-file surfer.m (which is attached to the collection of m files provided in this course). Simply
type the following command to create database:

[U,G] = surfer(’http://www.mpi-magdeburg.mpg.edu’,\,1000);

The code starts at the specified URL (http://www.mpi-magdeburg.mpg.edu in this case), and surfs the
Web until it has visited n = 1000 pages.

The surfer.m function will return an n× 1 cell array U of URLs which stores the visited webpages. The
n × n sparse connectivity matrix G shows how the webpages are linked to each other. Below, we can
visualize the structure of this connectivity matrix (using the command spy(G)).

For n = 1000, the processing time for constructing the data base was in our case around 2 hours. So it
is advisable to start with values of n around 20 to 40 first. Alternatively, one can directly load the G
and U matrices (corresponding to the n = 1000 case) by using the command

load(’dataMPIsurfer1000.mat’);

Figure 3: spy(G)

(b) Next, we construct the transition matrix A by using the following code sequence

n = size(G,2);

p = 0.85; % The probability we used in the class

delta = (1-p)/n;

c = sum(G,1);

k = find(c~=0);

D = sparse(k,k,1./c(k),n,n);

e = ones(n,1);

z = ((1-p)*(c~=0) + (c==0))/n;

A = p*G*D + e*z; % This corresponds to p*M + (1-p)/n*e*e’ discussed in class

(c) The PageRank corresponds to entries of the left eigenvector v corresponding to the dominant eigen-
value 1 of A. The implementation of the Power Method can be found in the m file powermat iter.mat.
We use an initial vector v(0) = ones(n, 1)/n, corresponding to initially equal probabilities and run the
iteration with tolerance value 10−4. The iteration converged after about 20 steps.
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x0 = ones(n,1)/n; tol = 10^(-4);

% x = right eigenvector corresponding to lambda

[x,stp,lambda]=powermat_iter(A,x0,tol);

% the dominant eigenvalue of A equal to 1

display(’The estimated largest eigenvalue is:’)

lambda

% check to see if this (lambda,x) is an eig/eigv right pair

norm(A*x-lambda*x)

% check to see if x is indeed a probability vector

sum(x)

The estimated value for λ was, in exact arithmetic, equal to 0.999955099977393. Then, we can compute
‖Ax− λ‖ = 2.11 · 10−5. Note that the x vector is a probability vector, i.e. the sum of its entries is 1.

The top five webpages in this PageRanking problem and the probabilities of being visited are listed
below:

The first website:

ans =

http://alpha.mixi.co.jp

The second website:

ans =

http://pr.mixi.co.jp

The third website:

ans =

http://ogp.me/ns/fb#

The fourth website:

ans =

http://ogp.me/ns#

The fifth website:

ans =

http://gmpg.org/xfn/11

The probability to be visited:

ans =

0.0119

The probability to be visited:

ans =

0.0119

The probability to be visited:

ans =

0.0075

The probability to be visited:

ans =

0.0065

The probability to be visited:

ans =

0.0060
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Problem [4]. Power Method for computing the PageRank (Problem 4).

(a) We are given a matrix A ∈ Rn×n with eigenvalues λ1, . . . , λn. Amongst these, choose the first k
ones: λ1, . . . , λk (and call them the preferred eigenvalues). Partition the eigenvector matrix as follows:

V =
[
V1 V2

]
where V

(j)
1 ∈ Cn corresponds to λj , i.e. AV

(j)
1 = λjV

(j)
1 b for j ∈ {1, 2, . . . , k}.

Additionally, V
(`)
2 ∈ Cn corresponds to λj+k, i.e. AV

(`)
2 = λk+`V

(`)
2 , for ` ∈ {1, 2, . . . , n− k}.

Let W1 ∈ Cn×(n−k) so that its columns represent an orthonormal basis for the orthogonal complement
of matrix V1, i.e. W∗

1V1 = 0 and W∗
1W1 = In−k.

We will show that the compressed matrix M = W∗
1AW1 ∈ C(n−k)×(n−k) has eigenvalues λk+1, . . . , λn

which correspond to eigenvectors W∗
1V

(1)
2 , . . . ,W∗

1V
(n−k)
2 respectively.

In order to do that, we need to show that for all ` ∈ {1, 2, . . . , n− k}, the following holds

MW∗
1V

(`)
2 = λk+`W

∗
1V

(`)
2 ⇔W∗

1AW1W
∗
1V

(`)
2 = λk+`W

∗
1V

(`)
2 (1)

Let P = In−W1W
∗
1 ∈ Cn×n. Note that P is a projection, i.e. P2 = P. By multiplying P = In−W1W

∗
1

to the left with W∗
1 and using that W∗

1W1 = In−k, it hence follows that W∗
1P = 0. Furthermore, by

multiplying the same relation to the right with V1 and using that W∗
1V1 = 0, it hence follows that

PV1 = V1.

Rewriting (1) by substituting W1W
∗
1 in the left term with In −P, we need to show that

W∗
1A
(
In −P

)
V

(`)
2 = λk+`W

∗
1V

(`)
2 ⇔W∗

1

(
AV

(`)
2 − λk+`V

(`)
2︸ ︷︷ ︸

0n

)
= W∗

1APV
(`)
2 (2)

Since V1 is a block eigenvector matrix of A, we can write AV1 = V1Λ1, with Λ1 = diag(λ1, . . . , λk).
By multiplying this equality with W∗

1 to the left, and using that W∗
1V1 = 0 and that PV1 = V1, we

have that

AV1 = V1Λ1 ⇒W∗
1AV1 = W∗

1V1Λ1 = 0⇒W∗
1APV1 = 0 (3)

Similarly, one can show that W∗
1APV2 = 0 and hence W∗

1APV
(`)
2 = 0, ∀ 1 6 ` 6 n− k. Finally, from

(2) it follows that the statement is proven (the matrix M has eigenvalues λk+1, . . . , λn which correspond

to the eigenvectors W∗
1V

(1)
2 , . . . ,W∗

1V
(n−k)
2 respectively) .

(b) We will use the result in part (a) to compute the second largest eigenvalue of the Google matrix
(constructed in Problem 3, part (b)) by means of the power iteration method.

% V is the eigenvector matrix and Lam is the eigenvalue matrix

[V,Lam] = eig(A);

% the 1 eigenvalue corresponds to the first column of V

V1 = V(:,1); V2 = V(:,2:n);

% the preferred eigenvalues (and the one which will be removed)

display(’The largest eigenvalue is:’)

Lam(1,1)

[W1f,S1,Z1] = svd(V1);

% select the last n-k columns of the nxn left singular vector matrix W1f

W1 = W1f(:,(k+1):n);

% check to see if these values are indeed 0

norm(W1’*V1);

norm(W1’*W1-eye(n-1));
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% eliminate the largest eigenvalue of matrix A (the matrix M is (n-1)x(n-1))

M = W1’*A*W1;

x0 = ones(n-1,1)/n; tol = 10^(-4);

[x,stp,lambda2]=powermat_iter(M,x0,tol);

% display the second largest eigenvalue

display(’The estimated second largest eigenvalue is:’)

lambda2

% check if the pair (lambda2,x) is indeed an eigenvalue/eigenvector pair

norm(M*x-lambda2*x)

The second largest eigenvalue computed by means of the above sequence of code is, in exact arithmetic,
equal to λ2 = 0.848708826007528. If we decrease the tolerance value from 10−4 (the one that determines
the number of steps performed in the power iteration function), then the value of λ2 will approach
p = 0.85.

Problem [5]. Clamped Beam.

Download the file beam.m which contains the system matrices. This clamped beam problem is

a Linear Time Invariant (LTI) dynamical system with dimension 348. The purpose of this

exercise is for someone to get familiar with such a linear model by computing some fundamental

quantities. Lets start by using the command load(’beam.mat’).

(a) In order to compute the system poles we need to solve the following eigenvalue problem.

poles=eig(A);

Next is the plot with the poles in the complex plane. As long as we have a real model,
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Figure 4: Poles for the beam model. Poles appeared in the left half plane, so, this indicates the stability.

the underneath transfer function it is real. So, the poles will be the roots of a polynomial

with real coefficients. That proves the conjugates pairs.

(b) Next is the transfer function.
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Figure 5: Transfer function for the beam model. 200 frequency values between [10−2, 103].

(c) Next is the impulse response evaluated in 500 points inside [0, 500].
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Figure 6: Impulse response for the beam model inside [0, 500].

(d) Next is the output after we approximate ẋ(t) with the Backward Euler scheme and use

as an input u = ones(1, 2000) with u(1 : 1000) = −1.
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Figure 7: Output y(t) assuming x(0) = 0.

Problem [6]. (Optimal H2 model reduction for Clamped Beam)

(a) Next is the magnitude of the transfer function evaluated in [10−2, 102] for the beam superimposed

with the IRKA approximant.
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Figure 8: IRKA approximant with order k=10.

(b) Impulse responses for the reduced model and the FOM.
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Figure 9: IRKA Impulse response with order k=10.

(c) Unfortunately, IRKA does not always converge. If you reach the MAXITER which is 100

it does not mean that the method has converged.
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Problem [7]. (Reduced models from measurements (Loewner method)

(a) One good way to partition the data is the following:

mu=s(1:2:end);v=H(1:2:end);

la=s(2:2:end);w=H(2:2:end);

To ensure that our reduce models are real we need to include the complex conjugate values

of the measurements. (for real symmetry we assume H̄(s) = H(s̄).

%% get a real model (assumed real symmetry)

mu=s(1:2:end);muc=conj(mu);v=H(1:2:end).’;vc=conj(v);

la=s(2:2:end);lac=conj(la);w=H(2:2:end);wc=conj(w);

MU=zeros(1,N);V=zeros(1,N);

MU(1:2:end)=mu;V(1:2:end)=v;

MU(2:2:end)=muc;V(2:2:end)=vc;

V=V.’;

LA=zeros(1,N);W=zeros(1,N);

LA(1:2:end)=la;W(1:2:end)=w;

LA(2:2:end)=lac;W(2:2:end)=wc;

Next, form the loewner matrices. Notice that the Loewner matrices still have complex entries.

In order to obtain matrices with real entries apply the following transformation

L=ones(N,1);

R=L.’;

J=(1/sqrt(2))*[1 -1i;1 1i];

Jb=blkdiag(kron(eye(floor(N/2)),J));

LL=Jb’*LL*Jb;

LLs=Jb’*LLs*Jb;

V = Jb’*V;

W = W*Jb;

R = R*Jb; % tangential direction

L = Jb’*L;% tangential direction

After all the above, you should have only real quantities (please check!).

(b) Applying SVD of the loewner matrix L or for the pairs [L Ls] and [L;Ls]. Then, from the

singular value decay you could decide the truncation order (r) and also you should get the

left and right projectors with the first r columns.
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Figure 10: Measurements from the clamped beam.
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(c) Providing only data we succeed to identify a Linear System and we were able to reduced it

to a much smaller one with dimension only 10. The method we used is the Loewner Framework

which is a data-driven method.
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Figure 11: The Loewner approximant with the FOM.

(d) Next is the pole/zero diagram for the FOM and ROM.
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Figure 12: Poles and Zeros for the reduced in comparison with the FOM.

(f) Next are computed the impulse responses.
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Figure 13: Impulse responses superimposed.
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Problem [8]. (Balanced truncation)
Here, we compute reduced order models using balanced truncation.

(a) First, we load the system matrices A,B,C stored in beam.matand then use the lyapchol

command to compute the Cholesky factors for the controllability gramian P and observability

gramian Q.

% load the beam linearized model of size 348

load beam

n = length(A);

%% Part a: Gramian computation

% here you can use lyapchop() or lyap() to compute the gramians

% the controllability gramian P with Cholesky factor U: P = U*U’;

Ur=lyapchol(A,B);

U=Ur’;

P = U*U’;

% the obseravbility gramian Q with Cholesky factor L: Q = L*L’;

Lr=lyapchol(A’,C’);

L=Lr’;

Q = L*L’;

(b) Here, we display the eigenvalues of the symmetric positive definite gramian matrices

P and Q, as well as the Hankel singular values of the system.

[Y,S,X]=svd(U’*L);

Sigma = diag(S);

figure(1);

semilogy(sort(abs(eig(P)),’descend’),’-r.’);hold on

semilogy(sort(abs(eig(Q)),’descend’),’-b.’);

semilogy(sort(abs(Sigma),’descend’),’-g.’);

legend(’eig(P)’,’eig(Q)’,’Hankel sv’);
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Figure 14: Eigenvalues of P,Q and Hankel singular values

(c) For several values of k, i.e. 5, 10, 15, 20, 25, we produce frequency response plots comparing

the original system with the reduced order models.

% the range of the desired order of the reduced model

rangek = [5 10 15 20 25];
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% the range of the frequency samples used to compute the frequency response

freq = logspace(-2,2,200);

% vector of color entries

col = [’r’,’g’,’b’,’m’,’c’];

for ii = 1:length(freq)

H(ii) = C*(1i*freq(ii)*speye(n)-A)^(-1)*B;

end

figure(2);

loglog(freq,abs(H),’k’);hold on;

for jj = 1:length(rangek)

k = rangek(jj);

%left and right truncated singular vector matrices

Yk = Y(:,1:k);

Xk = X(:,1:k);

% truncated diagonal matrices containing only the first k dominant Hankel svs

Sk = S(1:k,1:k);

% compute the pojector matrices

Wk = L*Xk*Sk^(-1/2);

Vk = U*Yk*Sk^(-1/2);

% the system matrices of the balanced truncation ROM

Ak = Wk’*A*Vk;

Bk = Wk’*B;

Ck = C*Vk;

for ii = 1:length(freq)

Hk(ii) = Ck*(1i*freq(ii)*speye(k)-Ak)^(-1)*Bk;

end

figure(2);

loglog(freq,abs(Hk),’r--’,’color’,col(jj)); hold on;

% compute the spectral abscissa of Ak

SpecAbs(jj) = max(real(eig(Ak)));

end

Below, a plot showing the spectral abscissa of Ak as a function of k.

figure(3)

plot(rangek,SpecAbs,’-ro’,’markerfacecolor’,’k’)

title(’Spectral abscissa of Ak as a function of k’);

xlabel(’k’);

(d) For k = 20, we produce a plot of the error between the original system and the balanced

truncation reduced model, i.e. plot |H(ω)−Hk(ω)|. On the same plot, the balanced
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Figure 15: Frequency responses of the original and reduced order systems
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Figure 16: Spectral abscissa of the reduced order A matrix

truncation upper error bound, i.e. 2(σk+1 + · · ·+ σn), is superimposed.

% take a fixed particular value for the truncation order

k = 20;

%left and right truncated singular vector matrices

Yk = Y(:,1:k); Xk = X(:,1:k);

% truncated diagonal matrices containing only the first k dominant Hankel svs

Sk = S(1:k,1:k);

% compute the pojector matrices

Wk = L*Xk*Sk^(-1/2); Vk = U*Yk*Sk^(-1/2);

% the system matrices of the balanced truncation ROM

Ak = Wk’*A*Vk; Bk = Wk’*B; Ck = C*Vk;

upperB = 2*sum(Sigma(2:n));

% compute frequency response of the error system

for ii = 1:length(freq)

Hk(ii) = Ck*(1i*freq(ii)*speye(k)-Ak)^(-1)*Bk;

Hdif(ii) = H(ii) - Hk(ii);

end
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figure(4);

loglog(freq,abs(Hdif),’m’); hold on;

loglog(freq,ones(1,length(freq))*upperB,’k’);

title(’Frequency response of the error system and upper bound’);

legend(’Reduced: k = 20’,’Upper bound for BT’);
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Figure 17: The error for k = 20 and the balanced truncation upper bound
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Problem [9]. Data-Driven (Optimal) Model Reduction In this problem is given a PDE which

describe the Heat diffusion through a perfectly insulated, heat-conducting rod. The goal

is to bypass the discretization (FEM,FDM, etc) by applying a Laplace tranformation and get

the approximate solution by interpolating the transfer function.

(a) Applying Laplace transformation...

∂T

∂t
(x, t) =

∂2T

∂x2
(x, t)⇒

L
{
∂T

∂t
(x, t)

}
= L

{
∂2T

∂x2
(x, t)

}
⇒

sT (x, s)− T (x, 0) =
∂2T

∂x2
(x, s).

with T (x, 0) = 0 we obtain sT (x, s) = ∂2T
∂x2 (x, s) which is:

T (x, s) = C1e
√
sx + C2e

−
√
sx. (4)

From the 1st boundary condition ∂T
∂t (0, t) = 0 ⇒ T (0, s) = 0 with Eq.[1] we compute C1 =

C2 = C. So Eq.[1] becomes

T (x, s) = C(e
√
sx + e−

√
sx). (5)

From the 2nd boundary condition ∂T
∂x (1, t) = u(t) ⇒ ∂T

∂x (1, s) = U(s). We compute the partial

derivative in respect to s from Eq.[2].

∂T

∂x
(x, s) = C(

√
se
√
sx −

√
se−
√
sx) (6)

For x = 1 we obtain:
∂T

∂x
(1, s) = C(

√
se
√
s −
√
se−
√
s) = U(s). (7)

Last part is y(t) = T (0, t) ⇒ Y (s) = T (0, s) which from Eq.[2] we get Y (s) = 2C. If we

form now H(s) = Y (s)
U(s) = 1

√
s( e
√

s−e−
√

s

2 )
= 1√

s sinh
√
s
.

(b) Solve the denominator equal to zero you get the poles of the system. Writing
√
. and exp{.}

as an infinite series you can conclude to the pole residue form.

(c) If we take the first 200 terms (k = 200) without the 1
s and we apply TF-IRKA we get an optimal

H2 model with order 2. Then, if we add back the pole at zero we get the following results:
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Problem [10]. RLC circuit - MIMO - Band-stop filter

(a) Results with D = 0.
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Figure 19: With D = 0 we are able to recover the system with order 10.

(b) Results with D = − 1
2 (BandStop).
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Figure 20: With D 6= 0 we are able to recover the system with order 11. (dim+1)

(c) For the full order model MIMO with have:

P = Q =



1
2 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0 0 0
0 0 1

2 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 0 0 0
0 0 0 0 1

2 0 0 0 0 0
0 0 0 0 0 1

2 0 0 0 0
0 0 0 0 0 0 1

2 0 0 0
0 0 0 0 0 0 0 1

2 0 0
0 0 0 0 0 0 0 0 1

2 0
0 0 0 0 0 0 0 0 0 1

2


And the Hankel Singular Values are:
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Figure 21: Hankel singular values.

As long as, there is no decay this system cannot be approximated using balanced truncation.

14


