MATHCORE: Exercises 19/07/2018\

Problem [1]. Approximation of the image: saturn.png.

1. The singular values on a logarithmic scale are:

Figure 1: Original picture and the Singular values decay.

2. In order to compute the optimal rank r approximation we need to compute the Singular Value
Decomposition of the image matrix. the approximation errors were computed using the matlab
comand norm(Z-Zr,2). The maximum singular value is o7 = 369.0955. The ranks of the ap-
proximants, the approximation errors (2-norm) and the compression ratios for each desired relative
errorare provided in the next table below:

Relative % error | Approximation rank | Approximation error R
10 7 30.17 0.0105
5 12 16.79 0.0180
2 27 7.310 0.0405

Problem [2]. Ellipse fitting using LS and TLS.

(a) Least square (LS) and total least square (TLS) solution:

% (LS) Least square approach Alxw=bl w=Api*b;
A=[xn."2.’ yn."2.°]; % (TLS) Total Least Square A2%q=0
b=ones (N, 1); At=[xn."2.’ yn."2.’ ones(N,1)];
[U,S,V]=svd(A,0); [Ut,St,Vt]=svd(At,0);
Api=V*S~(-1)*U’; wt=Vt (:,3)/Vt(3,3);
N = 63 points | Error Coefs Std of Noise
LS 0.9867 (ar, B) = (0.9480, 0.2470) 0.08
TLS 0.7647 | (@, 8,7) = (0.9656,0.2458, —1) 0.08

(b) Next is the plot with the two approximants.

Figure 2:



Problem [3]. Power Method for computing the PageRank.
In this problem, we will use the Power Method for ranking MPI-related webpages.

(a) Here, a database of webpages starting from an initial URL has to be constructed. For this task, we
will use the m-file surfer.m (which is attached to the collection of m files provided in this course). Simply
type the following command to create database:

[U,G] = surfer(’http://www.mpi-magdeburg.mpg.edu’,\,1000);

The code starts at the specified URL (http://www.mpi-magdeburg.mpg.edu in this case), and surfs the
Web until it has visited n = 1000 pages.

The surfer.m function will return an n x 1 cell array U of URLs which stores the visited webpages. The
n X n sparse connectivity matrix G shows how the webpages are linked to each other. Below, we can
visualize the structure of this connectivity matrix (using the command spy(G)).

For n = 1000, the processing time for constructing the data base was in our case around 2 hours. So it
is advisable to start with values of n around 20 to 40 first. Alternatively, one can directly load the G
and U matrices (corresponding to the n = 1000 case) by using the command

load(’dataMPIsurfer1000.mat’) ;
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Figure 3: spy(G)

(b) Next, we construct the transition matrix A by using the following code sequence

= ((1-p)*(c~=0) + (c==0))/n;
= p*G*D + exz; J This corresponds to p*M + (1-p)/n*exe’ discussed in class

n = size(G,2);

p = 0.85; % The probability we used in the class
delta = (1-p)/n;

c = sum(G,1);

k = find(c™=0);

D = sparse(k,k,1./c(k),n,n);

e = ones(n,1);

z

A

(c) The PageRank corresponds to entries of the left eigenvector v corresponding to the dominant eigen-
value 1 of A. The implementation of the Power Method can be found in the m file powermat_iter.mat.
We use an initial vector v(?) = ones(n, 1)/n, corresponding to initially equal probabilities and run the
iteration with tolerance value 10~%. The iteration converged after about 20 steps.



x0 = ones(n,1)/n; tol = 107 (-4);

% x = right eigenvector corresponding to lambda
[x,stp,lambda] =powermat_iter(A,x0,tol);

% the dominant eigenvalue of A equal to 1
display(’The estimated largest eigenvalue is:’)
lambda

% check to see if this (lambda,x) is an eig/eigv right pair
norm(A*x-lambda*x)

% check to see if x is indeed a probability vector
sum (x)

The estimated value for A was, in exact arithmetic, equal to 0.999955099977393. Then, we can compute
||Az — A\|| = 2.11 - 1075. Note that the z vector is a probability vector, i.e. the sum of its entries is 1.

The top five webpages in this PageRanking problem and the probabilities of being visited are listed
below:

The first website:
The probability to be visited:
ans =
ans =
http://alpha.mixi.co.jp
0.0119
The second website:
The probability to be visited:
ans =
ans =
http://pr.mixi.co.jp
0.0119
The third website:
The probability to be visited:
ans =
ans =
http://ogp.me/ns/fb#
0.0075
The fourth website:
The probability to be visited:

ans =
ans =
http://ogp.me/ns#
0.0065
The fifth website: The probability to be visited:
ans = ans =
http://gmpg.org/xfn/11 0.0060



Problem [4]. Power Method for computing the PageRank (Problem 4).

(a) We are given a matrix A € R™"*" with eigenvalues A1,...,\,. Amongst these, choose the first k
ones: Ap,..., A (and call them the preferred eigenvalues). Partition the eigenvector matrix as follows:

V = [Vl Vg] where ng) € C" corresponds to Aj, i.e. Ang) = )\jvgj)b for j € {1,2,...,k}.
Additionally, Vée) € C™ corresponds to Aj4g, i.e. AVy) = )\k+zV§[), for £ € {1,2,...,n— k}.

Let W, € C"*("=F) 50 that its columns represent an orthonormal basis for the orthogonal complement
of matrix Vi, i.e. WiV =0and WiW; =1, .

We will show that the compressed matrix M = W]AW; € Cn=k)x(n—k) hag eigenvalues A\gy1,...,An
which correspond to eigenvectors WTVSI), e ,WfVénfk) respectively.
In order to do that, we need to show that for all £ € {1,2,...,n — k}, the following holds

MWV = X WiVE @ WIAW, WiV = A WiVEY (1)

Let P =1, —W;Wj € C"*". Note that P is a projection, i.e. P2 = P. By multiplying P = I,, — W, W7}
to the left with W7 and using that WiW; = 1,,_j, it hence follows that WP = 0. Furthermore, by
multiplying the same relation to the right with V; and using that WiV, = 0, it hence follows that
PV, =V;.

Rewriting (1) by substituting W1 W7 in the left term with I, — P, we need to show that

WAL, - P)VY = A WiV & Wi AV — 0 VD) = WiAPVY) (2)

0,

Since V7 is a block eigenvector matrix of A, we can write AV = V1A, with Ay = diag(Aq, ..., Ax).
By multiplying this equality with W7 to the left, and using that WiV, = 0 and that PV; = V1, we

have that

AV, =VA = WTAVl = WTV1A1 =0= WTAPVl =0 (3)
Similarly, one can show that W* APV, = 0 and hence WAPV{" =0, V1 < ¢ <n— k. Finally, from
(2) it follows that the statement is proven (the matrix M has eigenvalues A\g11, ..., A, which correspond
to the eigenvectors WfVél), . ,WTV;n_k) respectively) . |

(b) We will use the result in part (a) to compute the second largest eigenvalue of the Google matrix
(constructed in Problem 3, part (b)) by means of the power iteration method.

% V is the eigenvector matrix and Lam is the eigenvalue matrix
[V,Lam] = eig(A);

% the 1 eigenvalue corresponds to the first column of V
Vi =V(:,1); V2 = V(:,2:n);

% the preferred eigenvalues (and the one which will be removed)
display(’The largest eigenvalue is:’)
Lam(1,1)

[Wif,S1,Z1] = svd(V1);

% select the last n-k columns of the nxn left singular vector matrix Wif
Wl = Wif(:, (k+1):n);

% check to see if these values are indeed O
norm(W1’*V1) ;
norm(W1’*Wil-eye(n-1));



% eliminate the largest eigenvalue of matrix A (the matrix M is (n-1)x(n-1))
M = W1’*A*W1;

x0 = ones(n-1,1)/n; tol = 10" (-4);
[x,stp,lambda2] =powermat_iter (M,x0,tol);

% display the second largest eigenvalue
display(’The estimated second largest eigenvalue is:’)
lambda2

% check if the pair (lambda2,x) is indeed an eigenvalue/eigenvector pair
norm(M*x-lambda2x*x)

The second largest eigenvalue computed by means of the above sequence of code is, in exact arithmetic,
equal to Ay = 0.848708826007528. If we decrease the tolerance value from 10~4 (the one that determines
the number of steps performed in the power iteration function), then the value of Ay will approach
p = 0.85.

Problem [5]. Clamped Beam.

Download the file beam.m which contains the system matrices. This clamped beam problem is

a Linear Time Invariant (LTI) dynamical system with dimension 348. The purpose of this
exercise is for someone to get familiar with such a linear model by computing some fundamental
quantities. Lets start by using the command load(’beam.mat’).

(a) In order to compute the system poles we need to solve the following eigenvalue problem.
poles=eig(A);

Next is the plot with the poles in the complex plane. As long as we have a real model,

Figure 4: Poles for the beam model. Poles appeared in the left half plane, so, this indicates the stability.

the underneath transfer function it is real. So, the poles will be the roots of a polynomial
with real coefficients. That proves the conjugates pairs.

(b) Next is the transfer function.

Figure 5: Transfer function for the beam model. 200 frequency values between [10~2,103].

(c) Next is the impulse response evaluated in 500 points inside [0, 500].



Figure 6: Impulse response for the beam model inside [0, 500].

(d) Next is the output after we approximate &(t¢) with the Backward Euler scheme and use
as an input u = ones(1,2000) with w(1:1000) = —1.

Figure 7: Output y(¢) assuming x(0) = 0.

Problem [6]. (Optimal 73 model reduction for Clamped Beam)

(a) Next is the magnitude of the transfer function evaluated in [1072,10%] for the beam superimposed
with the IRKA approximant.

Figure 8: IRKA approximant with order k=10.

(b) Impulse responses for the reduced model and the FOM.

Figure 9: IRKA Impulse response with order k=10.

(c) Unfortunately, IRKA does not always converge. If you reach the MAXITER which is 100
it does not mean that the method has converged.



Problem [7]. (Reduced models from measurements (Loewner method)

(a)

()

One good way to partition the data is the following:

mu=s(1:2:end) ;v=H(1:2:end);
la=s(2:2:end) ;w=H(2:2:end) ;

To ensure that our reduce models are real we need to include the complex conjugate values
of the measurements. (for real symmetry we assume H(s) = H(3).

%% get a real model (assumed real symmetry)
mu=s(1:2:end) ;muc=conj(mu) ;v=H(1:2:end).’;vc=conj(v);
la=s(2:2:end) ;lac=conj(la) ;w=H(2:2:end) ;wc=conj (w) ;
MU=zeros(1,N) ;V=zeros(1,N);
MU(1:2:end)=mu;V(1:2:end)=v;
MU(2:2:end)=muc;V(2:2:end)=vc;

V=V.’;

LA=zeros(1,N) ;W=zeros(1,N);
LA(1:2:end)=1a;W(1:2:end)=w;
LA(2:2:end)=lac;W(2:2:end)=vwc;

Next, form the loewner matrices. Notice that the Loewner matrices still have complex entries.
In order to obtain matrices with real entries apply the following transformation

L=ones(N,1);

R=L.’;

J=(1/sqrt(2))*[1 -1i;1 1i];
Jb=blkdiag(kron(eye(floor(N/2)),J));
LL=Jb’*LL*Jb;

LLs=Jb’*LLs*Jb;

V = Jb’*V;
W = WxJb;
R = RxJb; % tangential direction
L = Jb’*L;% tangential direction

After all the above, you should have only real quantities (please check!).

Applying SVD of the loewner matrix L or for the pairs [l L] and [L;L,]. Then, from the
singular value decay you could decide the truncation order (r) and also you should get the
left and right projectors with the first r columns.

Figure 10: Measurements from the clamped beam.



(c) Providing only data we succeed to identify a Linear System and we

to a much smaller one

with dimension only 10. The method we used

which is a data-driven method.

Normaized Singular values decay of the Loewner mairices

1og,g(o7,)

Beam model with order r=10

Figure 11: The Loewner approximant with the

(d) Next is the pole/zero

diagram for the FOM and ROM.
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Figure 12: Poles and Zeros for the reduced in comparison

(f) Next are computed the

with the FOM.

impulse responses.
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Figure 13: Impulse responses superimposed.

were able to reduced it
is the Loewner Framework



Problem [8]. (Balanced truncation)
Here, we compute reduced order models using balanced truncation.

(a)

(®)

(c)

First, we load the system matrices A,B,C stored in beam.matand then use the lyapchol
command to compute the Cholesky factors for the controllability gramian P and observability
gramian Q.

% load the beam linearized model of size 348
load beam

n = length(4);

%% Part a: Gramian computation
% here you can use lyapchop() or lyap() to compute the gramians

% the controllability gramian P with Cholesky factor U: P = UxU’;
Ur=lyapchol(A,B);

U=Ur’;

P = UxU’;

% the obseravbility gramian Q with Cholesky factor L: Q = L*L’;
Lr=1lyapchol(A’,C’);

L=Lr’;

Q = LL’;

Here, we display the eigenvalues of the symmetric positive definite gramian matrices
P and Q, as well as the Hankel singular values of the system.

[Y,S,X]=svd(U’*L);
Sigma = diag(S);

figure(1);
semilogy(sort(abs(eig(P)),’descend’),’-r.’);hold on
semilogy(sort(abs(eig(Q)),’descend’),’-b.’);
semilogy(sort (abs(Sigma), ’descend’),’-g.’);
legend(’eig(P)’,’eig(Q)’, ’Hankel sv’);
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Figure 14: Eigenvalues of P,Q and Hankel singular values

For several values of k, i.e. 5,10,15,20,25, we produce frequency response plots comparing
the original system with the reduced order models.

% the range of the desired order of the reduced model
rangek = [5 10 15 20 25];



% the range of the frequency samples used to compute the frequency response
freq = logspace(-2,2,200);

% vector of color entries

col = [’r’,’g’,’b’,’m’,’c’];

for ii = 1:length(freq)

H(ii) = Cx(li*freq(ii)*speye(n)-A)~(-1)%B;

end

figure(2);
loglog(freq,abs(H),’k’) ;hold on;

for jj = 1l:length(rangek)

k = rangek(jj);

%left and right truncated singular vector matrices
Yk = Y(:,1:k);

Xk = X(:,1:k);

% truncated diagonal matrices containing only the first k dominant Hankel svs
Sk = S(1:k,1:k);

% compute the pojector matrices

Wk
Vk

L*Xk*Sk~(-1/2) ;
UxYk*Sk~(-1/2) ;

% the system matrices of the balanced truncation ROM
Ak = Wk’*AxVk;

Bk = Wk’*B;

Ck = Cx*Vk;

for ii = 1:length(freq)

Hk(ii) = Ck*(li*freq(ii)*speye(k)-Ak) "~ (-1)*Bk;

end

figure(2);
loglog(freq,abs(Hk),’r--’,’color’,col(jj)); hold on;

% compute the spectral abscissa of Ak
SpecAbs(jj) = max(real(eig(Ak)));

end
Below, a plot showing the spectral abscissa of Aj as a function of k.

figure(3)

plot(rangek,SpecAbs,’-ro’, ‘markerfacecolor’,’k’)
title(’Spectral abscissa of Ak as a function of k’);
xlabel(’k’);

(d) For k=20, we produce a plot of the error between the original system and the balanced
truncation reduced model, i.e. plot |H(jw)—Hi(yw)|. On the same plot, the balanced
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Frequency response of the original and reduced order systems
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Figure 15: Frequency responses of the original and reduced order systems
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Figure 16: Spectral abscissa of the reduced order A matrix

truncation upper error bound, i.e. 2(0gy1+---+0n), is superimposed.

% take a fixed particular value for the truncation order
k = 20;

%left and right truncated singular vector matrices
Yk = Y(:,1:k); Xk = X(:,1:k);

% truncated diagonal matrices containing only the first k dominant Hankel svs
Sk = S(1:k,1:k);

% compute the pojector matrices
Wk = L*Xk*Sk~(-1/2); Vk = UxYk*Sk~(-1/2);

% the system matrices of the balanced truncation ROM
Ak = Wk’*AxVk; Bk = Wk’*B; Ck = CxVk;

upperB = 2*xsum(Sigma(2:n));

% compute frequency response of the error system
for ii = 1:length(freq)

Hk(ii) = Ck*(li*freq(ii)*speye(k)-Ak) " (-1)*Bk;
Hdif (ii) = H(ii) - Hk(ii);

end
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figure(4);

loglog(freq,abs(Hdif),’m’); hold on;
loglog(freq,ones(1,length(freq))*upperB, *k’) ;

title(’Frequency response of the error system and upper bound’);
legend(’Reduced: k = 20°’,’Upper bound for BT’);

Frequency response of the error system and upper bound

10t
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Figure 17: The error for £ = 20 and the balanced truncation upper bound
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Problem [9]. Data-Driven (Optimal) Model Reduction In this problem is given a PDE which
describe the Heat diffusion through a perfectly insulated, heat-conducting rod. The goal
is to bypass the discretization (FEM,FDM, etc) by applying a Laplace tranformation and get
the approximate solution by interpolating the transfer function.

(a) Applying Laplace transformation...

oT 9T
a(l‘,t) = w(

() - {2 )

x,t) =

0T
sT(z,s) — T(z,0) = w(az,s).
with T(z,0) =0 we obtain sT(x,s) = ?;E (x,s) which is:
T(x,s) = CreV® + Coe™ V", (4)

From the 1st boundary condition %(O,t) =0 = T(0,s) = 0 with Eq.[1] we compute C; =
Cy =C. 8So Eq.[1] becomes
T(z,s) = C(eV*® + e~ V7). (5)

From the 2nd boundary condition g—:(l,t) = u(t) = g—g(l,s) = U(s). We compute the partial
derivative in respect to s from Eq.[2].

or

5 (L5) = C(VseV™™ — /se™V*r) (6)

For £ =1 we obtain: ar
o-(1s) = C(VseV® — Vse V%) = U(s). (7)

Last part is y(t) = T7(0,t) = Y(s) = T(0,s) which from Eq.[2] we get Y (s) = 2C. If we

form now H(s) = }[;Ef

N2

1 _ 1
eVs _e—V/s - i :
V3( < ) V/ssinh /s

—

(b) Solve the denominator equal to zero you get the poles of the system. Writing /- and exp{.}
as an infinite series you can conclude to the pole residue form.

(c) If we take the first 200 terms (k =200) without the I and we apply TF-IRKA we get an optimal
Ho model with order 2. Then, if we add back the pole at zero we get the following results:

Figure 18: Left fig. is TF-IRKA convergence with tol = le — 8 middle fig. is the transfer function
approximant with the irrational superimposed and right figure is the evaluation of the approximation on
the real axis.
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Problem [10]. RLC circuit - MIMO - Band-stop filter

(a) Results with D =0.

Figure 19: With D = 0 we are able to recover the system with order 10.

(b) Results with D = —% (BandStop) .

Figure 20: With D # 0 we are able to recover the system with order 11. (dim+1)

(c) For the full order model MIMO with have:

OO OO OO OO OoONN
OO OO OO O oMo
OO O OO o oNNO O
OO OO OOoNNmO OO
OO O OO OO O
O O OOoNNO OO OO
O O OO OO O OO
O OO OO O O OO
OoONHO O OO OO O OO
V=D OO OO OO O OO

And the Hankel Singular Values are:

Hankel Singular Values
T T

Figure 21: Hankel singular values.

As long as, there is no decay this system cannot be approximated using balanced truncation.
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