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Matrix factorizations

Given A ∈ Rn×m

1. EVD (n = m) A = XΛX−1 det X 6= 0, Λ = diagonal

2. SVD A = UΣV∗ U,V: orthogonal Σ = diagonal

3. Schur decomposition (n = m) A = U∆U∗ U orthogonal, ∆ upper triangular

4. QR factorization A = QR Q orthogonal, R upper triangular

5. LU factorization (n = m) A = LU L lower triang, U upper triang.

6. Cholesky factorization (n = m) A = LL∗ L lower (upper) triangular

7. CUR factorization A ≈ CUR C=A(:, J),U=A(I , J)−1,R=A(I , :)
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The eigenvalue decomposition (EVD) . Given a square matrix A ∈ Rn×n, its EVD is given by:

A = XΛX−1 ⇔ AX = XΛ,

where det X 6= 0 and Λ is the diagonal matrix of eigenvalues:

Λ =

 λ1

. . .

λn

 , λi ∈ C

Therefore the columns of X = [x1 · · · xn], are the eigenvectors corresponding to the λi ’s:

Axi = λixi , i = 1, · · · , n.

Issues concerning the above decomposition:

It is not always possible to diagonalize a matrix in this form. For instance the Jordan block

A =

(
0 1
0 0

)
,

is not diagonalizable because its eigenvectors do not form a basis for R2.
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The eigenvalues may be complex. For instance, the eigenvalues of

A =

(
0 −1
1 0

)
,

which are the roots of the characteristic polynomial, are purely imaginary:

det(λI− A) = 0 ⇒ λ2 + 1 = 0 are λ1,2 = ±j ∈ C.

The EVD of symmetric matrices A, i.e. A = AT , or Hermitian matrices, i.e. A ∈ Cn×n,
A = A∗, has two important properties.

(i) The eigenvalues are real.

(ii) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Consequence: there always exists an orthonornal basis of eigenvectors for Rn, i.e. X can
be chosen orthogonal XXT = In (or unitary: XX∗ = In). Hence

A = XΛXT or A = XΛX∗.
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The singular value decomposition (SVD) . Given a matrix A ∈ Cn×m, n ≤ m, there exist

unitary matrices U ∈ Cn×n, UU∗ = In, and V ∈ Cm×m, VV∗ = Im, such that

A = UΣV∗

where Σ is an n ×m matrix with Σii = σi , σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, i = 1, · · · , n, and zero
elsewhere.

This is the singular value decomposition (SVD) of the matrix A; σi are the singular values of A
while the columns of U and V

U = (u1 u2 · · · un), V = (v1 v2 · · · vm)

are called the left and right singular vectors of A, respectively. Since

AA∗ = U

 σ2
1

. . .

σ2
n


︸ ︷︷ ︸

ΣΣ∗

U∗ and A∗A = V

[
ΣΣ∗

0

]
︸ ︷︷ ︸

Σ∗Σ

V∗,

these singular vectors are the eigenvectors of AA∗ and A∗A, respectively. From (6) follows:

Avi = σiui , i = 1, · · · , n
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Example 1. Consider the matrix

A =

[
1 −3
3 −1

]
.

It readily follows that the eigenvalue decompositions of the matrices

AA∗ =

[
10 6
6 10

]
and A∗A =

[
10 −6
−6 10

]
,

are:
AA∗ = UΣ2U∗ and A∗A = VΣ2V∗,

where

U = [u1, u2] =
1
√

2

[
1 −1
1 1

]
Σ =

[
σ1 0
0 σ2

]
, σ1 = 4, σ2 = 2

V = [v1, v2] =
1
√

2

[
1 1
−1 1

]
.
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Remarks:

σ2
i are the eigenvalues of AA∗ and ui are the corresponding eigenvectors, i=1,2.

σ2
i are also the eigenvalues of A∗A and vi are the corresponding eigenvectors, i=1,2.

A = σ1u1v∗1 + σ2u2v∗2 . Furthermore, A maps v1 7→ σ1u1 and v2 7→ σ2u2 (see figure 1).
This shows that the SVD maps the unit circle into an ellipsoid, where Av1 = σ1u1 and
Av2 = σ2u2 give the major and minor axes of the ellipsoid, respectively. The maximum
amplification factor is given by σ1, the largest singular value. (In MATLAB use the
command eigshow).

A

Figure: Quantities describing the singular value decomposition in R2
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Example 2. Let

A =

 1
1
0

 ,

clearly A does not have an EVD, since it is not square, but it has and SVD A = UΣVT :

U = [u1, u2, u3] =


1√
2

1√
2

0

1√
2
− 1√

2
0

0 0 1

 , Σ =

 √
2

0
0

 , V = [v1] = 1.

Example 3. Consider A =

[
3 4
0 0

]
. Again, A is not invertible so an EVD is not possible.

Let us proceed for its SVD: AA∗ =

[
25 0
0 0

]
and A∗A =

[
9 12

12 16

]

AA∗ = UΣ2U∗ and A∗A = VΣ2V∗, where U = [u1, u2] =

[
1 0
0 1

]
Σ =

[
σ1 0
0 σ2

]
, σ1 = 5, σ2 = 0 and V = [v1, v2] =

1

5

[
3 4
−4 3

]
.

Notice how A maps v1 7→ 5u1 and v2 7→ 0, so that the ellipsoid in figure 1 is reduced to the
interval [−5, 5] on the x-axis. This is because σ2 = 0.
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Properties of the SVD

1 Assume that in (6) σr > 0 while σr+1 = 0; the matrices U, Σ, V are partitioned
compatibly in two blocks, the first having r columns:

U = [U1 U2], Σ =

(
Σ1 0
0 Σ2

)
∈ Rn×m

and V = [V1 V2],

Σ1 =

(
σ1

. . .

σr

)
> 0, Σ2 = 0 ∈ R(n−r)×(m−r),

where U1, U2 have r , n − r columns, and V1, V2 have r , m − r columns respectively.
Given (6) and (1) the following statements hold.

2 rankA = r .

3

{
im A = span col [u1, · · · , ur ] , ker A = span col [vr+1, · · · , vm] ,

im AT = span col [v1, · · · , vr ] , ker AT = span col [ur+1, · · · , un] .

4 Dyadic decomposition. Decomposition as a sum of r outer products of rank one:

A = σ1u1v∗1 + σ2u2v∗2 + · · · + σrurv∗r .

5 The largest singular value of a matrix A is equal to its induced 2-norm: σ1 = ‖A‖2, where
the induced 2-norm of a A is defined as:

‖A‖2 = supx 6=0
‖Ax‖2
‖x‖2

.
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Optimal approximation in the 2-norm

The problem of approximating a matrix by one of lower rank is as follows.

Problem. • Given A ∈ Cn×m, rankA = r ≤ n ≤ m,

• Find X ∈ Cn×m, rankX = k < r , such that

• the 2-norm of the error matrix E = A−X, is minimized

Remark.

Given A of rank r, for all X of rank less than or equal to k, there holds

‖A− X‖2 ≥ σk+1(A).

In other words, take any matrix X of rank ≤ k, then the approximation error can never be
smaller than σk+1(A). Finding the best rank k approximant of a matrix is a non-convex
(DIFFICULT) optimization problem, but surprisingly, the SVD provides an explicit
solution!
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Solution. Schmidt, Eckart, Young, Mirsky. With the notation introduced above

min
X, rankX=k

‖A− X‖2 = σk+1(A)

provided that σk > σk+1. A (non-unique) minimizer X∗ is obtained by truncating the
dyadic decomposition to contain the first k terms:

X∗ = σ1u1v∗1 + σ2u2v∗2 + · · · + σkukv∗k .

Using the approximation (12), A ∈ Cn×m of rank r ≤ n is approximated by a matrix of lower
rank k < r , by eliminating the r − k smallest singular values, σk+1 · · · σr :

Â = Uk Σ̂kV∗k , where:

Uk = [u1, ..., uk ] ∈ Cn×k , Vk = [v1, ..., vk ] ∈ Cm×k , Σ̂k =

 σ1

. . .

σk

 ∈ Rk×k .

The storage required is thus reduced from

n×m to n× k+k+k×m = k× (n+m+1) .
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Example. Application of the theory to the approximation of static systems, in particular image
approximation. Any greyscale image is stored as a matrix, whose entries are the levels of grey
corresponding to each pixel. Figure ?? shows a 250× 250 image of the earth together with its
lower rank approximants. Notice how a rank 50 approximation is indistinguishable from the
original rank 250 image.

Earth image approximation by images of lower rank. Compression of the rank 50 approximant:
62500 ÷ 2550 ' 24÷ 1
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A lower rank k image approximation is obtained by retaining the k most significant singular
values, as given by (12) and shown in figure 2.
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Figure: Left pane: Singular values: original and rank 50 approximation. Right
pane: Normalized singular values providing relative approximation error

Furthermore, the singular values provide the

trade-off between accuracy and complexity

This is shown in the normalized singular value plot in figure 2, where specifying a desired relative
error on the y-axis gives the required complexity (rank) of the approximation on the x-axis.
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Generalized inverses or Pseudoinverses

Let A ∈ Rn×m. We call the matrix A# ∈ Rm×n, a generalized inverse or a pseudoinverse of A,
provided that the following four conditions are satisfied:

1. AA#A = A 2. A#AA# = A#

3.
[
AA#

]T
= AA# 4.

[
A#A

]T
= A#A

In particular, if A has linearly independent columns (⇒ AT A is invertible), the pseudoinverse is
a left inverse:

A# = (AT A)−1AT ⇒ A#A = Im.

Similarly, if A has full row rank, the right inverse of A is

A# = AT (AAT )−1 ⇒ AA# = In.

Properties of A#:

1. If A is invertible, its pseudoinverse is its inverse: A# = A−1.
2. The pseudoinverse of a zero matrix is its transpose.
3. The pseudoinverse of the pseudoinverse is the original matrix.
4. If the linear system of equations Ax = b is solvable, all solutions are all given by

x = A#b + (I− A#A)w where w ∈ Rn, is arbitrary.
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Least squares
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Further properties . • The short form of the SVD is A = U1Σ1V∗1 , where

U1 ∈ Rn×r , Σ1 ∈ Rr×r , and V1 ∈ Rm×r , where r is the rank of A.

• Moore-Penrose Pseudoinverse: A# = V1S−1
1 U∗1 .

• Connection with LS (Least Squares).

Problem: find x such that ‖Ax− b‖2 is minimized. Solution and error:

xLS = A#b =
r∑

i=1

u∗i b

σi
vi ρ2

LS =
n∑

i=m+1

(u∗i b)2

• Uniqueness: the outer products are unique, and thus, given a pair of left, right singular vectors
(ui , vi ), i = 1, · · · , r , the only other option for this pair is (−ui ,−vi ). On the other hand, the
columns of U2 are arbitrary subject to the constraint that they be linearly independent,
normalized, and orthogonal to the columns of U1. Similarly the columns of V2 are arbitrary,
subject to linear independence, normalization, and orthogonality with the columns of V1. Thus
U2, V2 are not necessary for the computation of the SVD of A.

• In MATLAB the command svd(A) computes the full SVD of A, while the command svds(A,k)

computes a short SVD containing k terms, that is the first k singular values and singular
vectors. The use of the short SVD is recommended for min(n,m)� 1.
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Example illustrating LS and TLS

>> % DATA

>> x=[0 1 2 4 5]’;y=[1 1 3 3 2]’;A=[x ones(5,1)];

>> % LS solution

>> sol=inv(A’*A)*A’*y

sol =

2.9070e-01

1.3023e+00

>> % TLS solution

>> [u,s,v]=svd([A y])

u =

9.4604e-02 -5.0562e-01 -5.5333e-01 3.1206e-02 6.5441e-01

1.9007e-01 -2.2358e-01 -6.0493e-01 1.7219e-01 -7.1993e-01

4.1879e-01 -6.0290e-01 3.9970e-01 -5.2409e-01 -1.6340e-01

6.0973e-01 -3.8812e-02 2.9650e-01 7.2748e-01 9.7884e-02

6.3857e-01 5.7391e-01 -2.8321e-01 -4.0679e-01 1.3104e-01

s =

8.3520e+00 0 0

0 2.1344e+00 0

0 0 8.3014e-01

0 0 0

0 0 0

v =

7.9735e-01 6.0200e-01 -4.2835e-02

2.3369e-01 -3.7340e-01 -8.9775e-01

5.5644e-01 -7.0581e-01 4.3841e-01

>> v(:,3)/v(3,3)

ans =

-9.7705e-02

-2.0477e+00

1.0000e+00

>> ezplot(.29*t+1.30,[0,5]); hold; ezplot(.097*t+2.04,[0,5]); plot(x,y,’*’);

>>
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>> errors = [norm(sol) s(3,3)] = [1.3344e+00 8.3014e-01]

• LS minimizes the sum of the squares of the vertical distances to the
approximant,

• TLS minimizes the sum of the squares of the perpendicular distances to the
approximant.
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History of the SVD1

Eugenio Beltrami (1835-1899) discovered the SVD in 1873 Lin. Alg.

Camille Jordan (1838-1921) co-discoverer in 1874 Lin. Alg.

James Sylvester (1814-1897) rediscovered some of these results Lin. Alg.

The above papers discuss the diagonalizability of

quadratic forms: yT Ax.

Erhard Schmidt2 (1876-1959)
Introduced infinite dimensional SVDs and showed how
to use it to obtain optimal low rank approximations of
an operator (1907).

Int. Eqns

Hermann Weyl (1885-1955) Developed a perturbation results for the SVs and used
to prove the approximation result (1912). Int. Eqns

Eckart-Young 1936
C. Eckart, G. Young, The approximation of one matrix
by another of lower rank. Psychometrika, Volume 1,
Pages 211-218 (1936).

rectangular

matrices

1G.W. Stewart, On the early history of the singular value decomposition,
SIAM Review, 35: 551-566 (1993).

2... of the Gram-Schmid orthogonalization fame.
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Motivating example for the CUR factorization

Find the principal axes of the 2-dimensional data set below.

In the above figure the dashed green lines are obtained by means of the SVD while the solid
green lines are obtained by means of the CUR factorization.
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The CUR factorization

Θ =

[
A B
C D

]
=

[
I

CA−1 I

]
·
[

A
Γ

]
·
[

I A−1B
I

]
,

where Γ = D− CA−1B, is the Schur complement. This implies

det Θ = det A · det Γ = det Θ = det A · det
(

D− CA−1B
)

⇒ det
(

D− CA−1B
)−1

=
det A

det Θ
(∗)

Also [
A B
C D

]−1

=

[
I −A−1B

I

]
·
[

A−1

Γ−1

]
·
[

I
−CA−1 I

]
.

From (*) follows that
‖Θ−1‖C = |Γ−1|.

Now given that the 2-norm and the Chebyshev norm are related as:

‖M‖C ≤ ‖M‖2 ≤ n‖M‖C ,

there follows

‖Θ‖2 = σ1(Θ) and ‖Θ−1‖2 = σ1(Θ−1) = (σmin(Θ))−1 = (σk+1(Θ))−1 ⇒

‖Θ−1‖2 = (σk+1(Θ))−1 ≤ (k + 1)‖Θ−1‖C ⇒

‖Θ−1‖−1
C ≤ (k + 1)σk+1(Θ) ⇒ |Γ| ≤ (k + 1)σk+1(Θ)
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Example.

K =


2 1 0 0 1
0 1 1 2 1
1 1 1 0 0
1 0 1 2 1
1 1 1 1 1

 , A =


2 1 0 0
0 1 1 2
1 1 1 0
1 0 1 2

 , B =


1
1
0
1

 , C =
[

1 1 1 1
]
,

D = 1,

⇒ Γ =
1

3
, adj (K) =


1 0 1 1 −2
1 2 1 −1 −2
−2 −2 0 0 4

1 2 1 1 −4
−1 −2 −3 −1 6

 .
S = svd (K) = [4.5224, 2.3243, 1.1997, 0.8176, 0.19398]

error bound = 5 · S(1, 5) = 0.96991.

The rank 4 CUR factorization is:

Kcur = K(:, 1 : 4) · (K(1 : 4, 1 : 4))−1 · K(1 : 4, :) =


2 1 0 0 1
0 1 1 2 1
1 1 1 0 0
1 0 1 2 1

1 1 1 1 2
3

 ,

and the element-wise error is less than the error bound computed above, namely 0.96991.
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The cross approximation algorithm. Given the matrix K ∈ Rn×n, let J0 be the indices of an
initial choice of k columns. Let the QR factorization of these k columns be:

K(:,J0) = Q1R1, Q1 ∈ Rn×k , R1 ∈ Rk×k .

Then determine the k rows given by the index set I1, so that |det K(I1, J0)| is maximum among
all the k × k submatrices of Q1:

I1 = maxvol(Q1, ε).

Next, we compute the QR factorization of K(I1, :)T :

K(I1, :)
T = Q2R2, Q2 ∈ Rn×k , R2 ∈ Rk×k ⇒ Q2 = K(I1, :)

TR−1
2

and let
J1 = maxvol(Q2, ε) and Q̂2 = Q2(J1, :) = K(I1, J1)TR−1

2

The resulting approximant is:

K1 = K(:,J1)Q̂−T
2 QT

2 = K(:,J1) · [K(I1,J1)]−1 · K(I1, :)

Repeat, with the original J0 replaced by J1, until the stopping criterion below is met:

‖Kr+1 − Kr‖F
‖Kr‖F

≤ δ.
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Examples.

>> %%%%%%%%%%% CUR approximants of rank 2

>> %%%% Consider the 5x5 matrix

>>

>> K=round(2*rand(5,5)) =

2 0 1 0 1

2 2 0 1 1

1 2 1 0 1

1 2 1 1 0

1 1 0 1 1

>> det(K) = 6

>> svd(K) = sv =

5.2415e+00

1.8968e+00

1.3723e+00

8.9721e-01

4.9015e-01

>> %%%%% Cross-approximation algorithm

>>

>> J=[1 2];

>> I = maxvol(K(:,J),0.01) = 1 2

>> J=maxvol(K(I,:).’,.01) = 1 2

>> I=maxvol(K(:,J),.01) = 1 2

>>
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>> Kapp=K(:,J)*inv(K(I,J))*K(I,:) =>

>> K-Kapp =

[ 0, 0, 0, 0, 0]

[ 0, 0, 0, 0, 0]

[ 0, 0, 3/2, -1, 1/2]

[ 0, 0, 3/2, 0, -1/2]

[ 0, 0, 0, 1/2, 1/2]

>> Upper_Bound_Of_Error = 3*sv(3,1) = 4.1169e+00

>> %%%%%%% Determining the max volume 2x2 sub matrix

>> I0=[];for k1=1:4; for k2=k1+1:5; I0=[I0;k1 k2];end;end;

>> Kd=zeros(10,10);for k1=1:10;for k2=1:10;Kd(k1,k2)=det(K(I0(k1,:),I0(k2,:)));end;end; =

[ 4, -2, 2, 0, -2, 0, -2, 1, 1, -1]

[ 4, 1, 0, 1, -2, 0, -2, 0, 0, 0]

[ 4, 1, 2, -1, -2, 0, -2, 1, -1, -1]

[ 2, -1, 2, 1, -1, 0, -1, 1, 1, -1]

[ 2, 2, -1, 1, 2, -2, 0, -1, -1, 1]

[ 2, 2, 1, -1, 2, 0, -2, -1, -1, -1]

[ 0, 0, 1, 1, 0, 1, 1, 0, 0, 0]

[ 0, 0, 1, -1, 0, 2, -2, 1, -1, -1]

[ -1, -1, 1, 0, -1, 2, 1, 1, 1, -1]

[ -1, -1, 0, 1, -1, 1, 2, 1, 1, 1]

>> I1=I0(1,:) = 1 2

>> J1=I0(1,:) = 1 2

>> I2=I0(2,:) = 1 3

>> I3=I0(3,:) = 1 4
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>> K1=K(:,J1)*inv(K(I1,J1))*K(I1,:) =

[ 2, 0, 1, 0, 1]

[ 2, 2, 0, 1, 1]

[ 1, 2, -1/2, 1, 1/2]

[ 1, 2, -1/2, 1, 1/2]

[ 1, 1, 0, 1/2, 1/2]

>> K2=K(:,J1)*inv(K(I2,J1))*K(I2,:) =

[ 2, 0, 1, 0, 1]

[ 2, 2, 3/2, 0, 3/2]

[ 1, 2, 1, 0, 1]

[ 1, 2, 1, 0, 1]

[ 1, 1, 3/4, 0, 3/4]

>> K3=K(:,J1)*inv(K(I3,J1))*K(I3,:) =

[ 2, 0, 1, 0, 1]

[ 2, 2, 3/2, 1, 1/2]

[ 1, 2, 1, 1, 0]

[ 1, 2, 1, 1, 0]

[ 1, 1, 3/4, 1/2, 1/4]

>> K-K1 =

[ 0, 0, 0, 0, 0]

[ 0, 0, 0, 0, 0]

[ 0, 0, 3/2, -1, 1/2]

[ 0, 0, 3/2, 0, -1/2]

[ 0, 0, 0, 1/2, 1/2]

>> K-K2 =

[ 0, 0, 0, 0, 0]
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[ 0, 0, -3/2, 1, -1/2]

[ 0, 0, 0, 0, 0]

[ 0, 0, 0, 1, -1]

[ 0, 0, -3/4, 1, 1/4]

>> K-K3 =

[ 0, 0, 0, 0, 0]

[ 0, 0, -3/2, 0, 1/2]

[ 0, 0, 0, -1, 1]

[ 0, 0, 0, 0, 0]

[ 0, 0, -3/4, 1/2, 3/4]

>> Kapp =

[ 2, 0, 1, 0, 1]

[ 2, 2, 0, 1, 1]

[ 1, 2, -1/2, 1, 1/2]

[ 1, 2, -1/2, 1, 1/2]

[ 1, 1, 0, 1/2, 1/2]

>> Kapp-K1 =

[ 0, 0, 0, 0, 0]

[ 0, 0, 0, 0, 0]

[ 0, 0, 0, 0, 0]

[ 0, 0, 0, 0, 0]

[ 0, 0, 0, 0, 0]

>> Kapp-K2 =

[ 0, 0, 0, 0, 0]

[ 0, 0, -3/2, 1, -1/2]

[ 0, 0, -3/2, 1, -1/2]
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[ 0, 0, -3/2, 1, -1/2]

[ 0, 0, -3/4, 1/2, -1/4]

>> Kapp-K3 =

[ 0, 0, 0, 0, 0]

[ 0, 0, -3/2, 0, 1/2]

[ 0, 0, -3/2, 0, 1/2]

[ 0, 0, -3/2, 0, 1/2]

[ 0, 0, -3/4, 0, 1/4]

>>

%%%%%%%%% CUR approximates of rank 2 of a 10x10 matrix

>>

>> K=round(2*rand(10,10)) =

1 1 2 0 1 0 2 1 1 1

1 2 1 1 2 0 1 1 1 1

1 1 2 0 0 1 2 1 1 1

1 0 1 1 1 1 0 1 2 2

2 1 2 2 1 0 1 2 1 1

1 0 0 1 1 1 0 0 1 1

2 1 1 2 2 1 1 1 1 0

1 1 1 1 1 0 1 0 2 2

1 1 1 0 2 1 1 0 2 1

0 1 1 1 1 0 1 1 1 1

>> det(K) = -4

>> svd(K)’ = 1.0423e+01 3.1581e+00 2.8614e+00 2.2472e+00 1.9109e+00

1.0674e+00 8.6656e-01 6.5080e-01 4.2707e-01 3.8469e-02

>> %%% Determine the maxvol 2x2 sub matrices
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>> I0=[];for k1=1:9; for k2=k1+1:10; I0=[I0;k1 k2];end;end;

>> size(I0) = 45 2

>> Kd=zeros(45,45);for k1=1:45;for k2=1:45;Kd(k1,k2)=det(K(I0(k1,:),I0(k2,:)));end;end;

>> max(max(abs(Kd))) = 4

>> Er=[];for k1=1:45;for k2=1:45; if abs(Kd(k1,k2))==4;Er=[Er; k1 k2];end;end;end =

3 41

3 42

4 18

4 27

6 18

6 27

10 19

10 32

11 16

11 17

18 41

18 42

19 18

19 27

21 18

21 19

21 27

21 32

23 19

23 32

27 9
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27 30

27 35

33 43

33 44

34 25

34 29

34 33

34 43

40 9

40 30

40 35

41 25

41 29 ==> there are 34 2x2 maxvol sub matrices

>>

>> %%% for instance

>> I=I0(23,:);J=I0(19,:);

>> Kapp=K(:,J)*inv(K(I,J))*K(I,:);

>> K-Kapp =

[ -1/4, -1/4, 0, 0, 0, -5/4, 0, 1/4, -3/4, -1/4]

[ 0, 1, 0, 1, 0, -1, 0, 1, -1, 0]

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[ 1/4, -3/4, 0, 1, 0, 1/4, -1, 3/4, 3/4, 5/4]

[ 3/4, -1/4, 0, 2, 0, -5/4, -1, 5/4, -3/4, -1/4]

[ 3/4, -1/4, 0, 1, 0, 3/4, 0, 1/4, 1/4, 3/4]

[ 1, 0, 0, 2, 0, 0, 0, 1, -1, -1]

[ 1/4, 1/4, 0, 1, 0, -3/4, 0, -1/4, 3/4, 5/4]
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[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[ -3/4, 1/4, 0, 1, 0, -3/4, 0, 3/4, -1/4, 1/4]

>> I0(23,:) = 3 9

>> I0(19,:) = 3 5

>> max(max(abs(sym(K-Kapp)))) = 2

>> sv(1,3)*3 = 8.5842e+00

>> %%% Cross-approximation algorithm

>> I=[8 10];

>> J=maxvol(K(:,I),.01) = 5 8

>> I=maxvol(K(:,J),.01) = 9 5

>> J=maxvol(K(:,I),.01) = 4 2

>> I=maxvol(K(:,J),.01) = 5 2

>> J=maxvol(K(:,I),.01) = 2 3

>> I=maxvol(K(:,J),.01) = 2 1

>> J=maxvol(K(:,I),.01) = 2 5

>> I=maxvol(K(:,J),.01) = 2 3

>> J=maxvol(K(:,I),.01) = 2 1

>> I=maxvol(K(:,J),.01) = 2 5

>> J=maxvol(K(:,I),.01) = 2 3

>> I=maxvol(K(:,J),.01) = 2 1

>> Kapp1=sym(K(:,J)*inv(K(I,J))*K(I,:));

>> K-Kapp1 =

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[ 0, 0, 0, 0, -1, 1, 0, 0, 0, 0]

[ 2/3, 0, 0, 4/3, 1, 1, -1, 2/3, 5/3, 5/3]
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[ 1, 0, 0, 2, 0, 0, -1, 1, 0, 0]

[ 1, 0, 0, 1, 1, 1, 0, 0, 1, 1]

[ 4/3, 0, 0, 5/3, 1, 1, 0, 1/3, 1/3, -2/3]

[ 1/3, 0, 0, 2/3, 0, 0, 0, -2/3, 4/3, 4/3]

[ 1/3, 0, 0, -1/3, 1, 1, 0, -2/3, 4/3, 1/3]

[ -2/3, 0, 0, 2/3, 0, 0, 0, 1/3, 1/3, 1/3]

>> max(max(abs(ans))) = 2

>> Kapp-Kapp =

[ 1/4, 1/4, 0, 0, 0, 5/4, 0, -1/4, 3/4, 1/4]

[ 0, -1, 0, -1, 0, 1, 0, -1, 1, 0]

[ 0, 0, 0, 0, -1, 1, 0, 0, 0, 0]

[ 5/12, 3/4, 0, 1/3, 1, 3/4, 0, -1/12, 11/12, 5/12]

[ 1/4, 1/4, 0, 0, 0, 5/4, 0, -1/4, 3/4, 1/4]

[ 1/4, 1/4, 0, 0, 1, 1/4, 0, -1/4, 3/4, 1/4]

[ 1/3, 0, 0, -1/3, 1, 1, 0, -2/3, 4/3, 1/3]

[ 1/12, -1/4, 0, -1/3, 0, 3/4, 0, -5/12, 7/12, 1/12]

[ 1/3, 0, 0, -1/3, 1, 1, 0, -2/3, 4/3, 1/3]

[ 1/12, -1/4, 0, -1/3, 0, 3/4, 0, -5/12, 7/12, 1/12]

>> det(K(I,J)) = 3
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Summary. The CUR factorization of rank k a matrix A ∈ Rn×m is defined as:

Acur = A(:, J) · [A(I , J)]−1 · A(I , :)

where I and J k column and row indices respectively. The problem consists in appropriately
determining these indices. Here are some ways of choosing I and J.

1 Exhaustive search for the maximum volume k × k submatrix A(I , J) of A. The complexity
of this direct approach is n!

(n−k)!k!
· m!

(m−k)!k!
, which is prohibitive for even moderate n, m.

2 Cross-Approximation algorithm. Pick an initial choice of k columns, say I0 = [1 2 · · · k].
Find the rows indexed by J1 of these k rows that maximize the volume of A(J1, I0). Then
find the columns indexed by I1 which maximize the volume A(J1, I1). And so on, until
convergence.

3 By means of the SVD. Let [U, S,V ] = svd(A). Find k rows of U(:, 1 : k) indexed by I
which maximize the volume of U(I , 1 : k). Then find k rows of V (:, 1 : k) indexed by J
such that the volume of V (J, 1 : k) is maximized.

4 As in the previous case but the choice of rows indexed by I and of the columns indexed by
J is done by means of the DEIM (Discrete-Empirical Interpolation Method) procedure
(which as discussed involves an oblique projection).

5 Cross-Approximation combined with DEIM.
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The google matrix and the PageRank

A matrix M ∈ Rn×n is called positive (non-negative) if Mi,j > 0, (Mi,j ≥ 0) for all i and j .

A non-negative matrix square M is called primitive if there is a positive integer k such that all
entries of Mk are positive. It is called irreducible, if for any indices i , j , there is a positive
integer k = k(i , j) such that Mk

i,j > 0.

Proposition. If M is irreducible then I + M is primitive.

Theorem. Oscar Perron (1907).

Given a positive matrix M the following hold.
M has a positive eigenvalue λ > 0.

This eigenvalue has geometric and algebraic multiplicity equal to one.
For all other eigenvalues µ of M there holds λ > |µ|.
The left and right eigenvectors corresponding to λ can be chosen

with positive entries.

Theorem. Ferdinand Georg Frobenius (1912).

Perron’s result holds as well, for irreducible matrices M.
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Example. Consider

M=


0 0 1 0 1 0
1 0 0 0 0 1
0 0 0 1 1 1
0 0 0 1 0 0
1 1 1 1 1 1
0 1 0 0 0 1

 ⇒ M2 =


1 1 1 2 2 2
0 1 1 0 1 1
1 2 1 2 1 2
0 0 0 1 0 0
2 2 2 3 3 4
1 1 0 0 0 2

 ⇒

M4 =


8 10 7 12 10 17
4 6 4 5 5 9
6 9 6 9 8 14
0 0 0 1 0 0

14 18 12 20 17 30
3 4 2 2 3 7

⇒ M10 =


2186 2929 1894 2934 2638 4823
1150 1542 997 1541 1388 2538
1779 2385 1542 2385 2147 3926

0 0 0 1 0 0
3788 5076 3282 5081 4571 8358
744 997 644 992 897 1642



Conclusion. The matrix M above is non-negative, but neither irreducible nor primitive.

Thanos Antoulas 37 / 64



The EVD of M is: M = TΛT−1:

T =

0.4446 0.3015 −0.0019− 0.4129i −0.0019 + 0.4129i 0.5773 −0.5773
0.2339 −0.6030 −0.4032− 0.1785i −0.4032 + 0.1785i 0 0
0.3619 −0.6030 0.6141 0.6141 0 0

0 0 0 0 0 0
0.7705 0.3015 −0.3807 + 0.1118i −0.3807− 0.1118i 0.5773 −0.5773
0.1512 0.3015 0.2128 + 0.2344i 0.2128− 0.2344i −0.5773 0.5773

diag Λ = [2.5468, − 1, − 0.2734 + 0.5638i , − 0.2734− 0.5638i , 1, 1]

The set of left eigenvectors (obtained from the EVD of MT ) are

0 −0.2927 −0.6070 −0.6070 0.4850 0
0 −0.3923 −0.2609− 0.3112i −0.2609 + 0.3112i −0.4850 0
0 −0.2536 0.0808 + 0.2802i 0.0808− 0.2802i −0.4850 0
1 −0.3923 −0.2609− 0.3112i −0.2609 + 0.3112i 0.2425 1
0 −0.3532 0.4269− 0.0310i 0.4269 + 0.0310i 0 0
0 −0.6459 −0.1800− 0.0310i −0.1800 + 0.0310i 0.4850 0

corresponding to the following ordering of the eigenvalues:

1, 2.5468, − 0.27341 + 0.56382i , − 0.27341− 0.56382i , − 1, 1.

Thanos Antoulas 38 / 64



Remark. (a) the largest in magnitude eigenvalue has multiplicity one and the entries of the
right/left eigenvectors have the same sign.

(b) The eigenvalue 1 has algebraic multiplicity equal to 2 but geometric multiplicity equal to 1.
Thus (up to a scalar) the right eigenvector and generalized eigenvector are

[1, 0, 0, 0, 1, − 1]T , [1, 1, − 1, − 2, 1, 0, − 1]T ,

while the corresponding left eigenvector and generalized eigenvector are:

[0, 0, 0, 1, 0, 0], [1, 3, − 1, 0, − 2, 5]
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Example. Consider the non-negative matrix

M=


0 1 0 0 0 0
0 1 1 0 0 0
0 1 1 0 0 1
0 0 1 0 0 1
1 1 1 1 0 0
1 1 1 0 1 0

 ,M2 =


0 1 1 0 0 0
0 2 2 0 0 1
1 3 3 0 1 1
1 2 2 0 1 1
0 3 3 0 0 2
1 4 3 1 0 1

 ,M3 =


0 2 2 0 0 1
1 5 5 0 1 2
2 9 8 1 1 3
2 7 6 1 1 2
2 8 8 0 2 3
1 9 9 0 1 4

 ,

M4 =


1 5 5 0 1 2
3 14 13 1 2 5
4 23 22 1 3 9
3 18 17 1 2 7
5 23 21 2 3 8
5 24 23 1 4 9

 , M5 =


3 14 13 1 2 5
7 37 35 2 5 14

12 61 58 3 9 23
9 47 45 2 7 18

11 60 57 3 8 23
13 65 61 4 9 24

 .

Since M5 > 0 is positive, M is primitive. Therefore the Perron-Frobenius results apply.

The characteristic polynomial of M is s3(s3 − 2s2 − s − 2), which means that the zero
eigenvalue has algebraic multiplicity 3.
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As it turns out the geometric multiplicity of this eigenvalue is 1. Hence the matrix contains a

3× 3 Jordan block of the form

 0 1 0
0 0 1
0 0 0

. The EVD is M = VΛV−1, is

diag (Λ) =


2.659 + 0i

−0.32948 + 0.80225i
−0.32948− 0.80225i

6.4572e − 06 + 0i
−3.2286e − 06 + 5.5921e − 06i
−3.2286e − 06− 5.5921e − 06i

 and

0.1121 0.1822 + 0.1762i 0.1822− 0.1762i −0.5773 0.5773 0.5773

0.2981 −0.2014 + 0.0881i −0.2014− 0.0881i −3.7 · 10−6 (−1.8 + 3.2i) · 10−6 (−1.8− 3.228i) · 10−6

0.4946 0.1971− 0.2788i 0.1971 + 0.2780i 3.7 · 10−6 (1.8− 3.2i) · 10−6 (1.864 + 3.228i) · 10−6

0.3825 0.0148− 0.4551i 0.0148 + 0.4551i 0.5773 −0.5773− 3.2 · 10−6 i −0.5773 + 3.228 · 10−6 i

0.4842 −0.5852 −0.5852 0.5773 −0.5773 + 2.0 · 10−11 i −0.5773− 2.0 · 10−11 i

0.5224 0.1630 + 0.4407i 0.1630− 0.4407i 4.8 · 10−11 (2.4 + 4.1i) · 10−11 (2.4− 4.1i) · 10−11

while the left eigenvector matrix (with the same ordering of eigenvalues) is

0.1343 0.5188 0.5188 0.5773 −0.5773 −0.5773

0.6903 0.0939− 0.3097i 0.0939 + 0.3097i 5.6 · 10−6 (2.8 + 4.9i) · 10−6 i (2.8− 4.9i) · 10−6 i

0.6535 −0.2242 + 0.0709i −0.2242− 0.0709i −0.5773 0.5773− 2.4 · 10−6 i 0.5773 + 2.4 · 10−6 i

0.0367 0.3182− 0.3807i 0.3182 + 0.3807i 0.5773 −0.5773 + 2.4 · 10−6 i −0.5773− 2.4 · 10−6 i

0.0976 0.2006 + 0.3807i 0.2006− 0.3807i −2.8 · 10−6 (−1.4− 2.4i) · 10−6 (−1.4 + 2.4i) · 10−6 i

0.2596 −0.3715 + 0.0354i −0.3715− 0.0354i 1.3 · 10−11 (6.9− 1.2i) · 10−11 (6.9 + 1.2i) · 10−11 i
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Markov chains in a nutshell

A non-negative matrix M is (column) stochastic, if the elements of each column sum to 1.

• Then the row vector IT all of whose entries equal 1, is a left eigenvector with eigenvalue 1.

• If M is irreducible, 1 is the maximal eigenvalue.

• If M is primitive, then from the general theory follows that

Mk =



π1 π1 · · · π1

π2 π2 · · · π2

...
... · · ·

...

πn πn · · · πn


,

for k large enough, where
π := [π1, π2, · · · , πn]T ,

is the unique vector whose entries sum to one and satisfies

Mπ = π.
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Connectivity of the 6-node graph.

A =



0 0 1
3

0 0 0
1
2

0 1
3

0 0 0
1
2

0 0 0 0 0

0 0 0 0 1
2

1

0 0 1
3

1
2

0 0

0 0 0 1
2

1
2

0


, A0 =



0 1
6

1
3

0 0 0
1
2

1
6

1
3

0 0 0
1
2

1
6

0 0 0 0

0 1
6

0 0 1
2

1

0 1
6

1
3

1
2

0 0

0 1
6

0 1
2

1
2

0


.

>> [diag(dA) diag(dA0)] =

0 + 0i 1 + 0i

1 + 0i 0.67787 + 0i

0.40825 + 0i -0.099542 + 0i

-0.40825 + 0i -0.41166 + 0i

-0.5 + 0i -0.5 + 1.2092e-08i

-0.5 + 0i -0.5 - 1.2092e-08i

>> [uA(:,2) uA0(:,1)] =

-8.9023e-16 3.3379e-16

-4.2773e-16 -5.4448e-17

-7.2745e-16 -2.0314e-16

-0.74278 0.74278

-0.37139 0.37139

-0.55709 0.55709
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A10
0 =

0.00711 0.00407 0.00540 0 0 0
0.01221 0.00708 0.00950 0 0 0
0.00811 0.00475 0.00642 0 0 0
0.43248 0.43652 0.43050 0.44824 0.44727 0.4375
0.21721 0.21999 0.22197 0.21875 0.21973 0.22852
0.32287 0.32757 0.32619 0.33301 0.33301 0.33398

,

A100
0 =

4.4e − 18 2.5e − 18 3.4e − 18 0 0 0
7.7e − 18 4.5e − 18 6.0e − 18 0 0 0
5.2e − 18 3.0e − 18 4.0e − 18 0 0 0

0.44444 0.44444 0.44444 0.44444 0.44444 0.44444
0.22222 0.22222 0.22222 0.22222 0.22222 0.22222
0.33333 0.33333 0.33333 0.33333 0.33333 0.33333

,

A100 =

1.2e − 39 0 0 0 0 0
1.2e − 39 0 1.2e − 39 0 0 0

0 0 1.2e − 39 0 0 0
0.088889 0 0.17778 0.44444 0.44444 0.44444
0.044444 0 0.08888 0.22222 0.22222 0.22222
0.066667 0 0.13333 0.33333 0.33333 0.33333

.
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A1 = α · A0 + (1− α) · 1
6
· ones (6, 6)

where α = 0.9

}
=



1
60

1
6

19
60

1
60

1
60

1
60

7
15

1
6

19
60

1
60

1
60

1
60

7
15

1
6

1
60

1
60

1
60

1
60

1
60

1
6

1
60

1
60

7
15

11
12

1
60

1
6

19
60

7
15

1
60

1
60

1
60

1
6

1
60

7
15

7
15

1
60


.

λ(A) λ(A0) λ(A1) uA1
(:, 1)

0 1 1 0.07147
1 0.67787 0.61009 0.10363

0.40825 −0.09954 −0.08958 0.07971
−0.40825 −0.41166 −0.37050 0.72041

−0.5 −0.5 + 1.2e − 08i −0.45 + 1.2e − 08i 0.39566
−0.5 −0.5− 1.2e − 08i −0.45− 1.2e − 08i 0.54979
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The eigenvalues of the Google matrix

Consider a graph connectivity matrix C ∈ Rn×n and the associated Google matrix G:

G = αC + (1− α)
1

n
I · IT

where 0 ≤ α ≤ 1 and IT = [1, 1, · · · , 1] ∈ R1×n.

Recall: C is a column stochastic matrix, i.e. the entries of each column sum to 1. Thus the
biggest (in magnitude) eigenvalue of C is 1 and IT is the associated left eigenvector.

Let the matrix of all left/right eigenvectors be: W, V ∈ Cn×n. Assume further that the

first row/column of V, W is the left/right eigenvector of C associated with the eigenvalue 1:

W =

[
IT

X

]
, V =

[
π | Y

]
where WV = In.

Moreover π is normalized so that the sum of its entries is one, i.e. it is the page rank. Thus

Thanos Antoulas 46 / 64



IT π = 1, IT Y = 0T , Xπ = 0, X Y = In−1 ⇒ WCV =

[
1 0T

0 XCY

]
.

Consequently, the eigenvalues of C (in descending magnitude) are 1, λ2, λ3, · · · ,λn,

and those of XCY ∈ C(n−1)×(n−1), are λ2, · · · , λn.

Let us now consider 1
n

W (I · I) V:

1

n
W
(
I · IT

)
V =

1

n
W I

[
1, 0T

]
=

1

n

[
n

X I

] [
1, 0T

]
=

[
1 0T

1
n

X I 0n−1

]
.

Thus

WGV = αWCV + (1− α)
1

n
W I · IT V

= α

[
1 0T

0 XCY

]
+ (1− α)

[
1 0T

1
n

X I 0n−1

]
=

[
1 0T

1−α
n

X I αXCY

]

Since the transformed matrix is block diagonal its eigenvalues are 1 and those of the

second block on the diagonal, namely αXCY, in other words αλ2, αλ3, · · · , αλn.
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Conclusion. The parameter α in the Google matrix G serves two purposes:

(a) It makes G a positive matrix (C is very sparse, i.e. it has lots of zeros), and

(b) It enhances the convergence of the power iteration method by increasing the
gap between the first and the second eigenvalues.

(c) Finally, the page rank becomes: 1−α
n (I6 − αC)−1I.
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The power iteration

The simple vector iteration (power method)

Given is the diagonalizable matrix A ∈ Rn×n. Let v(0) be any vector with ‖v(0)‖ = 1. Repeat
the following steps:

x = Av(k) and v(k+1) =
x

‖x‖
.

Proposition. Assume that A has a simple largest eigenvalue λ1 and let v1 be the corresponding
eigenvector. Let v(0) be any vector that has a non-zero component in the direction of v1. The
simple iteration described above converges towards the dominant eigenvector and the angle

between the kth iterate v(k) and v1, is of the order O
(
|λ2|k

|λ1|k

)
.

Remarks.

(a) The smaller the ratio |λ2|
|λ1|

, the faster the convergence.

(b) The result holds even if the matrix is not diagonalizable but λ1 6= λ2.

(c) If the initial vector v(0) does not have a component in the direction of v1, convergence is
towards v2, assuming that |λ2| 6= |λ3|.

(d) The algorithm does not converge if |λ1| = |λ2|, but λ1 6= λ2. Example:
[

0 1
1 0

]
.
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The basic Krylov iteration . Given a real n × n matrix A and an n-vector b, let v1 = b
‖b‖ . At

the kth step we have

AVk = VkHk + fke∗k , Vk ∈ Rn×k , Hk ∈ Rk×k , fk ∈ Rn, ek ∈ Rk ,

where ek is the kth canonical unit vector in Rk , Vk = [v1 · · · vk ] consists of k column vectors
which are orthonormal, V∗k Vk = Ik , and A projected onto the subspace spanned by the columns

of Vk is Hk = V∗k AVk ; these conditions imply that vj+1 =
fj
‖fj‖

, j = 1, · · · , n − 1.

Two algorithms fall under this umbrella, namely the Lanczos algorithm and the Arnoldi
algorithm.

For arbitrary A, the Krylov iteration is known as the Arnoldi iteration; in this case Hk is upper
Hessenberg. For symmetric A = A∗, it is known as the symmetric or one-sided Lanczos
iteration, in which case Hk is tridiagonal and symmetric. A variant involving two staring vectors
can be applied to non-symmetric matrices A and is known as the two-sided or non-symmetric
Lanczos iteration. In this case the projected matrix Hk is tridiagonal (but not symmetric).
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Three uses of the Krylov iteration. The iteration described above has three main uses.

(a) Iterative solution of Ax = b. In this case we seek to approximate the solution x in an
iterative fashion. The Krylov methods are based on the fact that successive approximants
belong the subspaces Ki mentioned above. Both the Arnoldi and the one-sided Lanczos
algorithms, construct iteratively orthonormal bases for these subspaces.

(b) Iterative approximation of the eigenvalues of A. In this case b is not apriori fixed. The goal
is to use the eigenvalues of the projected matrix Hk as approximants of the dominant
eigenvalues of A. The most simple-minded approach to the approximation of eigenvalues is the
power method, where given b, successive terms Ak−1b are computed. To overcome the slow
convergence of this method, Krylov methods are used, where at the kth step one makes use of
the information contained in the whole sequence b, Ab, · · · , Ak−1b.

(c) Approximation of linear systems by moment matching.

Krylov methods have their origins in eigenvalue computations and eigenvalue estimations.

Thanos Antoulas 52 / 64



Krylov methods

Given A ∈ Rn×n, b ∈ Rn, let Rk (A, b) ∈ Rn×k be the kth controllability or Krylov matrix.

Problem.

Devise a process which is iterative and at the kth step gives

AVk = VkHk + Rk , Vk , Rk ∈ Rn×k , Hk ∈ Rk×k , k = 1, 2, · · · , n.

These quantities have to satisfy the following conditions at each step.

1 The columns of Vk are orthonormal: V∗k Vk = Ik , k = 1, 2, · · · , n.

2 The residual Rk is orthogonal to the columns of Vk , that is, it satisfies the

Galerkin condition: V∗k Rk = 0, k = 1, 2, · · · , n.

3 span colVk = span colRk (A, b), k = 1, 2, · · · , n.

This problem leads to the Lanczos and Arnoldi procedures.
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The Lanczos method

Let A = AT together with a sequence of vectors v1, · · · , vk that form an orthonormal basis for
the reachability (Krylov) subspace Rk (A, v1).

We now need to orthogonalize Avk with respect to the vi , i = 1, · · · , k. This can be done by
applying the Gram–Schmidt procedure to the new direction, namely Avk . The component rk of
Avk orthogonal to the span of Rk (A, v1), is given by

rk = Avk −
k∑

i=1

(v∗i Avk ) vi = Avk − Vk [V∗k Avk ] = [I− VkV∗k ] Avk

Thus the new vector in the sequence is vk+1 = rk
‖rk‖

. Therefore

Avk =
k+1∑
i=1

αi,kvi where αi,` = v∗i Av` ∈ R.

The above equations can also be written compactly as follows:

AVk = VkHk + rke∗k where Hk = V∗k AVk .
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Thus, Hk , is tridiagonal; for simplicity let αi = αi,i and βi+1 = αi,i+1; then

Hk =



α1 β2
β2 α2 β3

β3 α3

. . .
. . .

. . .

αk−1 βk
βk αk


.

Thus the vectors in the Lanczos procedure satisfy a three term recurrence relationship:

Avi = βi+1vi+1 + αivi + βivi−1, i = 1, 2, · · · , k − 1.

Eigenvalue estimation.

• If rk = 0, Lanczos terminates, in which case if (λ, x) is an eigenpair of Hk , (λ,Vkx) is an
eigenpair of A (since Hkx = λx implies AVkx = VkHkx = λVkx).

• Otherwise, A has an eigenvalue in the interval [λ+ µ, λ− µ], where µ = ‖Ax− λx‖, and

ρ(Vkx) =
x∗V∗

k AVk x

x∗x
= λ, is the so-called Rayleigh quotient. Moreover, by interlacing, we also

have λk (A) ≤ λ ≤ λ1(A).
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The Arnoldi method

The procedure described above can also be applied to non-symmetric matrices A. The resulting
process is known as the Arnoldi method. The difference is that the projected matrix Hk loses its
symmetry and becomes a Hessenberg matrix; in this case we denote the entries by hi,j = αi,j :

Hk =



h1,1 h1,2 h1,3 · · · h1,k−1 h1,k
h2,1 h2,2 h2,3 · · · h2,k−1 h2,k

h3,2 h3,3 h3,k−1 h3,k

. . .
...

...

hk−1,k−1 hk−1,k
hk,k−1 hk,k

 .

A key consequence of this lack of tridiagonal structure is that long recurrences are now needed
to construct vk+1. This is in contrast to the Lanczos procedure where only three-term
recurrences are necessary.
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Theorem.

1 Hk is obtained by projecting A onto the span of the columns of Vk : Hk = V∗k AVk .
2 The remainder Rk has rank one and can be written as Rk = rke∗k , where ek is the kth unit

vector; thus rk ⊥ Rk .
3 This further implies that vk+1 = rk

‖rk‖
, where vk+1 is the (k + 1)st column of V.

Consequently, Hk is an upper Hessenberg matrix.
4 Let pk (λ) = det(λIk −Hk ), be the characteristic polynomial of Hk . This monic

polynomial is the solution of the following minimization problem:

pk = argmin ‖p(A)b‖2,

where the minimum is taken over all monic polynomials p of degree k. Since
pk (A)b = Akb +Rk · p, where p

i+1
is the coefficient of λi of the polynomial pk , it also

follows that the coefficients of pk provide the least squares fit between Akb and the
columns of Rk .

5 There holds

rk =
1

‖pk−1(A)b‖
pk (A)b, Hk,k−1 =

‖pk (A)b‖
‖pk−1(A)b‖

.

The above result is based on the following fundamental lemma.
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Lemma.

Let AV = VH + fe∗k , with A ∈ Rn×n, H ∈ Rk×k upper Hessenberg, V ∈ Rn×k , V∗V = Ik , and
Ve1 = v1. There holds

Ajv1 = VHje1 for 0 ≤ j < k,

and in addition, for any polynomial φ of degree less than k

φ(A)v1 = Vφ(H)e1.

For j = k we have
Akv1 = VHke1 + νf, ν = Πk−1

i=1 hi+1,i ∈ R,

that is, ν = e∗kHke1, is the product of the entries of the subdiagonal of H. Furthermore, for any
polynomial φ of degree k there holds

φ(A)v1 = Vφ(H)e1 + ναk f,

where αk is the coefficient of the highest power ξk , of φ(ξ).
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The Arnoldi algorithm: recursive implementation

Given: the pair A ∈ Rn×n, b ∈ Rn, find: V ∈ Rn×k , f ∈ Rn, and H ∈ Rk×k , such that

AV = VH + fe∗k , where

H = V∗AV, V∗V = Ik , V∗f = 0

where H is in upper Hessenberg form (as before ek denotes the kth unit vector in Rn).

The Arnoldi algorithm

1 v1 = b
‖b‖ , w = Av1; α1 = v∗1 w

f1 = w − v1α1; V1 = (v1); H1 = (α1)

2 For j = 1, 2, · · · , k − 1

βj =‖ fj ‖, vj+1 =
fj
βj

Vj+1 =
(
Vj vj+1

)
, Ĥj =

(
Hj

βje
∗
j

)
w = Avj+1, h = V∗j+1w, fj+1 = w − Vj+1h

Hj+1 =
(

Ĥj h
)
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Algorithm: The k–step Arnoldi factorization. Algorithm: The k–step two-sided Lanczos process.

Data: A ∈ Rn×n, starting vector v ∈ Rn. Data: A ∈ Rn×n, starting vectors v,w ∈ Rn.

v1 = v/‖v‖; v1 = v/‖v‖; w1 = w/‖w‖;
w = Av1; α1 = v∗1 w; f = Av1; g = A∗w1;

f1 ← w − α1v; α1 = w∗1 f;

V1 ← (v1); H1 ← (α1); f1 ← f − α1v1; g1 ← g − α1w1;

for j = 1, 2, · · · , k − 1, for j = 1, 2, · · · , k − 1,

βj = ‖fj‖; vj+1 ← fj/βj ; βj =
√
|g∗j fj |; γj = sign (g∗j fj )βj ;

Vj+1 ← (Vj , vj+1); vj+1 ← fj/βj ; wj+1 ← gj/γj ;

Ĥj ←
[

Hj

βje
∗
j

]
w← Avj+1; f ← Avj+1 − γjvj ; g← A∗wj+1 − βjwj ;

h← V∗j+1w; fj+1 ← w − Vj+1h αj+1 ← w∗j+1f;

Hj+1 ← (Ĥj , h); fj+1 ← f − αj+1vj+1; gj+1 ← g − αj+1wj+1

end end

The Arnoldi and the two-sided Lanczos algorithms
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Rational Krylov methods

In order to accelerate convergence of the Krylov methods, one can apply a shift-invert strategy
as for the single vector iteration. Therein A is replaced by (A− λI)−1, where λ is the shift
which is close to the eigenvalue of interest. This leads to the family of rational Krylov methods.
A further improvement can be obtained by using several shifts λ1, · · · , λk .

The rational Arnoldi algorithm

1 Choose shift µ
Solve (A− µI)v1 = b, normalize v1 ← v1

‖v1‖
;

Solve (A− µI)w = v1; α1 = v∗1 w
f1 = w − v1α1; V1 = (v1); H1 = (α1)

2 For j = 1, 2, · · · , k − 1

βj =‖ fj ‖, vj+1 =
fj
βj

Vj+1 =
(
Vj vj+1

)
, Ĥj =

(
Hj

βje
∗
j

)
Solve (A− µI)w = vj+1, h = V∗j+1w, fj+1 = w − Vj+1h

Hj+1 =
(

Ĥj h
)
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Example. Consider the following symmetric matrix:

A =


2 1 2 1
1 2 0 1
2 0 2 1
1 1 1 0

 , b =


1
0
0
0

 .
The symmetric Lanczos (Arnoldi)
procedure for steps k = 1, 2, 3, 4,
yields:

V1 =


1
0
0
0

 , H1 = [2], R1 =


0
1
2
1

 ,

V2 =


1 0
0 1√

6

0 2√
6

0 1√
6

 , H2 =

[
2
√

6√
6 8

3

]
, R2 =


0 0
0 1√

54

0 −1√
54

0 1√
54

 ,

V3 =


1 0 0
0 1√

6
1√
3

0 2√
6

−1√
3

0 1√
6

1√
3

 , H3 =

 2
√

6 0√
6 8

3
1√
18

0 1√
18

4
3

 , R3 =


0 0 0

0 0
√

3
2

0 0 0

0 0 −
√

3
2

 ,

V4 =


1 0 0 0
0 1√

6
1√
3

1√
2

0 2√
6

−1√
3

0

0 1√
6

1√
3

−1√
2

, H4 =


2

√
6 0 0√

6 8
3

1√
18

0

0 1√
18

4
3

√
3√
2

0 0
√

3√
2

0

, R4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
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The eigenvalues of the successive approximants H1, H2, H3, H4 are:

2,

(
−0.1387

4.8054

)
,

 −0.1550
1.3405
4.8145

 ,


−0.7399
−0.1362

2.0607
4.8153

 .

Example.

A =
1

4


23 −15 −3 3

3 −11 1 −1
3 5 1 −1
7 1 −19 3

 , b =


1
1
1
1


The Arnoldi procedure AVk = VkHk + fke∗k , yields the following matrices for k = 1, 2, 3, 4:

V1 =
1

2


1
1
1
1

 , H1 = [0], f1 =


1
−1

1
−1



V2 =
1

2


1 1
1 −1
1 1
1 −1

 , H2 =

[
0 2
2 2

]
, f2 =


2
2
−2
−2


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V3 =
1

2


1 1 1
1 −1 1
1 1 −1
1 −1 −1

 , H3 =

 0 2 2
2 2 0
0 4 −2

 , f3 =


1
−1
−1

1



V4 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

, H4 =


0 2 2 5
2 2 0 0
0 4 −2 2
0 0 2 4

 , f4 =


0
0
0
0

 .
The eigenvalues of the successive approximants H1, H2, H3, H4 are:

0,

(
3.2361
−1.2361

)
,

 3.7866
−1.8933 + 1.6594i
−1.8933− 1.6594i

 ,


5.4641

2
−1.4641

−2

 .
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